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A theoretical study of the concentration quenching of the luminescence in GaP is presented. The
formulation takes cognizance of the effects of plasma screening on the electron- and hole-capture proba-
bility in forming bound excitons, and on various nonradiative (Auger) processes. For the system
GaP(Zn,0), the luminescence is proportional to the branching ratio out of the exciton state given by
b= {14 (rzr/72n) +FL(A— 1)/ f1(72r/Ten) } ), where 7z, and 7., are, respectively, the radiative and non-
radiative (Auger) lifetimes of the bound excitons, 7, is the Auger lifetime of bare trapped electrons, and f
is an occupancy factor for the bound excitons. The ffactor depends on the Fermi level, temperature, exciton
capture probability, and .- and 7.». The occupancy facter is found to be a sensitive function of doping. The
exciton-capture probability is found to proportional to [14 (¢./8)]8, where g, is the screening parameter
and 3 is reciprocal of the Bohr radius of the exciton. Thus the probability falls rapidly for ¢;>g. The two
Auger lifetimes are found to have the form 7.,= (Bp)™! and 7.,= (Cp?)7L, where p is the hole concentration,
and B and C are coefficients which are calculated in terms of the various binding and transition energies.
The results of our calculations show that the branching ratio is close to unity in the low-doping region but
falls rapidly when the acceptor concentration increases beyond 108 cm™3, These results are in agreement with
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experimental data.

I. INTRODUCTION

ALLIUM phosphide is an indirect-gap semicon-
ductor with energy gap E,=2.34 eV at T=20°K,
and is of particular interest from the standpoint of
luminescent processes since it exhibits a number of
below band-gap radiative transitions.! These include
donor-acceptor pair recombination? and exciton re-
combination at both isoelectronic impurities®* and
nearest-neighbor donor-acceptor complexes.®~ In this
paper we consider the excitonic recombination processes
and attempt to explain the experimentally observed
dependence of the luminescent efficiency on impurity
concentration (doping). To do this we calculate how
the radiative decay efficiency of bound excitons depends
on majority carrier plasma screening and Auger de-
excitation mechanisms. Other workers have attempted
to explain the concentration quenching of exciton
luminescence by invoking Auger mechanisms.®® How-
ever, the important effects of plasma screening were
not considered.
We shall be concerned mainly with GaP doped with
zinc and oxygen—GaP(Zn,0). The GaP(Zn,0) system
gives luminescence in the red region (=1.8 eV) and is
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associated with excitons bound to nearest-neighbor
Zn-O complexes.’® The electrically neutral Zn-O
complex is a deep electron trap (=300 meV) which,
after trapping an electron, can capture a hole by
Coulomb attraction into a shallow level (=36 meV).
The quantum efficiency of the radiative excitonic
decay process is quite efficient for Zn concentrations
near 10® cm—2. Beyond this Zn concentration range the
quantum efficiency rapidly decreases” (for fixed O
concentration). We show that this behavior can be
explained in terms of a simple model for the recombina-
tion kinetics when the effects of plasma screening by
free holes and Auger interactions are included.

II. THEORETICAL FORMULATION

To explain the concentration quenching of the lumi-
nescence in p-type GaP(Zn,0) three problems must be
solved. The first relates to a description of the re-
combination kinetics, the second to the effects of
majority carrier screening on capture rates of electrons
and holes into various trap states, and the third to
nonradiative Auger transitions. In our formulation we
treat the excitons, either weakly or tightly bound, as
independent particles and assume that the semiconduc-
ter consists of two simple parabolic bands, a valence
and conduction band.

A. Recombination Kinetics

We consider first the steady-state recombination
rates and radiative branching ratios for excitons based
on a simple model of the recombination kinetics.® The
central process giving rise to bound excitons, after
excess minority carriers have been generated either

9J. M. Dishman and M. DiDomenico, Jr., Phys. Rev. (to
be published).
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optically or by a forward biased p-z junction, is indi-
cated illustratively in Fig. 1 for a p-type semiconductor.
In our model electrons (holes) are trapped at an
impurity or defect center as a first step. Subsequently,
holes (electrons) are also trapped as weakly bound
effective-mass particles thereby creating a bound
exciton. The recombination process therefore involves
the probability of capture of both particles at (charged)
point defects, and the probability of radiative and
nonradiative decay of the exciton.’® Capture proba-
bilities and nonradiative Auger processes are treated
below.

For definiteness we analyze the configuration
shown in Fig. 1 and let the density of traps be NV,, the
density of traps with electrons be N, the density of
traps with excitons be N, and the density of traps
with bare electrons be N;~. We define an occupancy
factor f for bound excitons as

Ne=fNg, 1)
and note also that since N,=N*+N
Ni=(1—=/f)Ne. (2)

Assuming that the electron-trap level is relatively deep
compared to kT, the rate equation governing the
exciton concentration is given by?

N &= (pN/7pN )= (paN &/ 75N )

— (/7o +1/720)N &, (3)
where p denotes the concentration of holes, 7, is the
lifetime for hole capture into the electron-occupied
trap state, and 7., and 7., are, respectively, the radia-

tive and nonradiative exciton lifetimes. The capture
rate 1/7,, can be written as

l/Tpt= 'Uap,Ni, (4)
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F1c. 1. Schematic diagram showing the trapping processes in
the creation of bound excitons in a p-type semiconductor.

1V, L. Bonch-Bruevich and E. G. Landsberg, Phys. Status
Solidi 29, 9 (1968).
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where v is the thermal velocity of holes and ¢, is the
thermally averaged hole-capture cross section. The
second term in Eq. (3) describes the process of thermal
emission of the hole bound in the shallow exciton hole
level and can be evaluated at thermal equilibrium using
detailed balance.? The result is that the quantity p is
given by

pr=pelFr—EIT (5)

where E; is the Fermi level, Ej, is the exciton-hole level
(which includes the effects of screening as discussed
below), and kT is the thermal energy. Combining
Egs. (1)-(3) we find in steady state (N ,*=0) that the
occupancy factor is given by

I=014u/p)F oV /p) A/ 7ot 1/722) T (6)

It is of interest to note that in the limit where
70V i(1/720+1/7420) — O the f factor reduces to the
equilibrium Fermi factor for holes bound to the exciton
hole level.

The quantum efficiency of the exciton recombination
process may be expressed, in steady state, by a simple
branching ratio b, i.e., ,

IV;I/T;”-

b= ’
le(l/Tzr"I"l/T:cn)_l‘Nt_/Ten

where 7., denotes the nonradiative Auger lifetime for
trapped bare electrons. Using Egs. (1) and (2) we
then find

b= {1+ (TxT/Txn)+[(1_f)/f:l(Txr/Ten)}—l . (8)

We conclude that when 1/7.,70, the exciton quantum
efficiency becomes sensitive to the occupancy factor f.
The f factor is in general a complicated function of
doping owing to the effects of screening on the capture
cross section o,; and the hole ionization energy Ej
entering in Eq. (6) through the 7,N, product and the
pr-factor, respectively. In the region of heavy doping,
where the plasma screening length becomes comparable
to the Bohr radius of the bound-hole, exciton formation
becomes very improbable. This is reflected in a decrease
in the f factor which, in turn, results in a reduction in
the exciton quantum efficiency b.

(7)

B. Hole- (Electron-) Capture Cross Section

In our model (Fig. 1) electrons (holes) are deeply
trapped at electrically neutral (Zn-O) defects. Holes
(electrons) moving with thermal velocity can then be
captured in s-like or p-like orbital states by the Coulomb
potential of the resulting charged centers. We take for
the interaction potential a screened Coulomb form
given by

V=—(¢/er)e ", )

where 7 is the distance of the hole from the charged
center, e is the dielectric constant of the medium, e is

electronic charge, and g, is a screening parameter. Lax!

11 M, Lax, Phys. Rev. 119, 1502 (1960).
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has calculated the capture cross section for a pure
Coulomb potential (—e?/er) and shows that capture
takes place by a multistep process in which a particle
is initially captured into a shallow hydrogenic state
followed subsequently by a cascading into the ground
state with phonon emission. The cross section o5, can
be written as

Tpr= f Eha(U)P(U)dU, (10)

where ¢(U)dU is the cross section for capture into a
hydrogenic state with binding energy U, and P(U)
is the sticking probability for a state with binding
energy U. Lax has shown that o (U) diverges as 1/U%?%
and P(U) decreases approximately as U3?®, so that the
over-all dependence of ¢,; on binding energy E; should
be E)2.

To calculate the dependence of o, on the screening
parameter ¢,, we estimate the binding energy E; in a
hydrogenic state for pure Coulomb and screened
Coulomb potentials. By making use of the relation
o< F2 we determine the functional form of the
screening factor. The magnitude of the capture cross
section in the unscreened case ¢,°(¢s=0) must be
calculated by the methods described by Lax.!! We shall
be concerned with s-like and p-like bound states, and
for simplicity will consider specifically 1s and 2p states.
It may be noted that these represent the total orbital
functions of trapped electrons and holes and not the
envelope functions. Using the virial theorem, the
binding energy is half the potential energy which, in
screened (E3) and unscreened (E?) cases, is given by

El « (@ (&% er)| on1) = (28/n)~2¢HD (11)
and
Eno<{oni| (¢&/er) exp(—gqor)| on1)
«[(28/n)+¢: 12D, (12)

where ¢,; is the 1s and 2p hydrogenic wave function
with quantum numbers # and /, and 8 is the reciprocal
Bohr radius. From Egs. (11) and (12) and the relation
0« Ex? we find

o pe=0p[1+ (ngs/28) 4D, (13)
For 1s and 2p states this reduces to
ope(s) =0, ()14 (g:/26) 1™ (14)
and
ope(p) =0 (P)[1+(gs/8) I 7. (15)

This predicts, as we might expect, that screening be-
comes important when ¢,~@, and that o, decreases
rapidly in the region ¢,>@. In the classical Debye limit
we therefore conclude that screening affects the capture
probability when the majority carrier concentration
exceeds the critical value 71, where

Nerit= ek T/47r€2(102 (16)
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F1c. 2. Schematic representation of the Auger interactions
of (a) trapped electrons in p-type and (b) trapped holes in #-type
materials.

and a is the Bohr radius. At room temperature this
gives 7eris= (€/ag?) X10% cm=2 when g, is in Angstrom
units. Thus for e~ 10 and ¢y~ 10-20 A, corresponding to
binding energies of order 50 meV, we find #¢piy~ 10—
109 cm—3. We estimate therefore that in the doping
range 10'8-cm™2 screening of the Coulomb capture cross
section should become important.

C. Auger Recombination Lifetime

In this subsection we compute the radiationless
recombination rate for several important Auger
processes including explicitly the effects of screening.
We distinguish between two basic processes: (1) re-
combination of trapped minority carrier electrons
(holes) with majority carrier holes (electrons), and (2)
recombination of excitons with free carriers. In Figs.
2 and 3 we outline diagrammatically some of the
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F16. 3. Schematic representation of the Auger interactions of
bound excitons in (a) p-type and (b) n-type materials.
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important Auger processes. Other Auger processes exist
(see Refs. 10 and 12 for a review of nonradiative
processes); however, these involve exchange inter-
actions between conduction-band electrons and valence-
band holes and, as a consequence, are thought to be less
probable than the processes indicated in Figs. 2 and 3.
The interaction Hamiltonian H, for any of the Auger
processes is the electron-electron (or hole-hole) screened

Coulomb interaction given by
Hyo= (e%/eriz)e %M,

(17

where 71, is the relative distance between the two inter-
acting particles.

1. Auger Recombination of Trapped Electrons (Holes)

To calculate the Auger lifetime of trapped electrons
(holes) (see Fig. 2), we choose hydrogenic 1s wave
functions for the trapped particles, i.e.,

o= (8%/m) PP, (18)

where 8 is the reciprocal Bohr radius. The wave func-
tions of the free carriers are chosen to be plane waves
of the form

Y= (1/Q)! e, (19)

where © is the volume and k is the wave vector. The
matrix element for the processes shown in Fig. 2 is

e2(B3/m)12 dridrs
(oo | Huz [Yrothc) = / / l

Q32 r1—1s|

Xe—q.slrrrzl—ﬂr&iko ‘r1+i(k—k’) .12

(20)

The type of integral in Eq. (20) has been evaluated by
Bess.® Using his results we obtain

(S%‘//k' I Hl2|¢ko,'//k>
= 32(e¥/€) (m/ Q)18 g+ | leo— K| ]
X[B+ | k+ko—K[2T2 (21)

The Auger transition rate 1/7., appropriate for use in
Eq. (3) is given by
1/7en=(wen)pQ, (22)

where (w.,) is the average transition probability and p
is the hole (electron) concentration. The transition
probability w., is given by the familiar expression

Won= (2 1) (@) $%)? / / dkdk,| My |2
X[ Ei(k)—E;(k)],

where M, is the initial-to-final-state matrix element in
Eq. (21), E;(k) and E;(k) are the initial- and final-state
energies, respectively, and the integration is over the

(23)

2P, T. Landsberg, in Lectures in Theoretical Physics (Uni-
versity of Colorado Press, Bouler, Colo., 1966), Vol. 8A.
13 L. Bess, Phys. Rev. 105, 1469 (1957).
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occupied initial states k; and the empty final states
ky. Assuming that the energy bands are spherical and

that for the situation shown in Fig. 2, k>>k =k, Egs.
(21) and (23) reduce to

Wen = (326%/€)2(B%/2h%Q) (m*/K)/kde
1% B —
o BEHE) oK)

X/k
@2+ ()"

WK/ 2m*=E,—E,,

» (24)

in which
(25)

where m* is the effective mass, E, is the energy gap, and
E, is the energy level of the trap (see Fig. 2). The
average transition probability can be evaluated by
using the approximation that the k vectors of the initial
states cut off at a value

kd~61%p), (26)

where p is the valence-band hole (conduction-band
electron) concentration. Using this approximation in
Eq. (24) and substituting the result in Eq. (22) we find

1 32meN 2 PBK
._z( >(.._ @
Ten € h3 /(932+K2)2 (62+K2)4

It is convenient to recast this expression in a form
which displays the dependence on free-carrier concen-
tration and the energies £, and E,. To do this we relate
the reciprocal Bohr radius 3 to the trap energy and the
effective mass, i.e.,

B2=2m*E,/h?. (28)
Comparing Egs. (25) and (28) we conclude that
Kz>32, In the Debye limit Eq. (27) then reduces to
1 1/32meN2 ESR(E,—E)\
)

Ten h

p2
X )
[(4re2p/ ek T)+2m* (E,— E)/H2]

(29)

which differs, in certain respects, from the related
expressions derived by others.10:12:13

2. Auger Recombination of Bound Excitons

We now consider the Auger recombination of bound
excitons. The interactions considered are shown in
Fig. 3. For the sake of definiteness we treat the case of
bound excitons in p-type crystals as shown in Fig. 3(a).
We choose s-like wave functions for the trapped elec-
trons and p-like wave functions for the trapped holes.
These wave functions give allowed electric dipole
transitions for the bound exciton. We denote the wave
functions of the trapped minority carriers by ¢. and of
the trapped majority carriers by ®,. The s states are
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given by Eq. (18), and the p states are given by
&,(p)= (8/32m)"2Br cosfeFr/2. (30)

The matrix element for the interaction shown in Fig.
3(a) is

<¢t7¢k’ l H12 ’ (blr‘l/k>

B438,%\ 12 drydrs
(@) [ e
3272 [rl—rg

X g eslri—ra|+i(k—k’) :ra— (ButBp/2) 71 ,

(1)

where 3, and 3, are, respectively, the reciprocal Bohr
radii of electrons and holes. The matrix element can
be evaluated straightforwardly and is given by

32me?
l<<ot,~//k'JHul<I>z,¢k>l=< . )(ﬂnﬂp)3/2
V2ed

{ Bo(Bat38,) | K—Kk'| } 32)
g2+ | k—K' [)[ (8. +38,)+ | k—k' [T

The transition rate for Auger recombination of excitons
1/74s is given by Eq. (22) where the transition proba-
bility w,, is now

Wen= 2m/h) (Q/87?)
x/dkflMif|26[Ei(k)—Ef(k)]- (33)

Substituting Eq. (32) into Eq. (33), performing the
integration for spherical bands, and substituting the
resulting expression for (w,,) into Eq. (22) yields

1 (327re2>2 <2m*>
Tan - € wh?
X [ B298,° (Ba+B,/ 2K

(g2 + K> L(BntBr/2)+K2 ]

where K is given by Eq. (25) with E,—E, replaced
by E. the exciton recombination energy (see Fig. 3).
We can convert Eq. (34) into a form which displays
the dependence on free-carrier concentration and energy,
as was done previously in Eq. (29), by making use of
relations similar to Eq. (28). We assume for the con-
figuration shown in Fig. 3(a) that the electron trap is
deep so that 8,>>8,. This corresponds to the case of
GaP(Zn,0). Taking an average effective mass m* for
both conduction and valence bands we find

1 32me\2/ 2m*N 2/ 312 [ 52 512
Y ()
Tzn € n? ThE,°
b4
X .
[(Ane*p/ ekT)+2m*E,/h*

, (349

35)
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That these expressions should involve the hole binding
energy is to be expected. This will have important
effects. A similar dependence does not occur in the
results given elsewhere.® These expressions apply equally
well to an n-type crystal [Fig. 3(b)] if we replace p by
n, Ey by E., the electron binding energy, and interpret
E, as a deep-hole trap.

3. Discussion of Screening Effects

In discussing the effects of screening we must
distinguish between two interactions. The first is the
screening of the basic electron-electron or hole-hole
Coulomb interaction. This enters in the final expressions
for the Auger recombination rates in Eqgs. (29) and (35)
as the factor [(4mwe?p/ekT)+2m*E,/7*]12. For typical
semiconductors where E,~1 eV and e~10 we find at
room temperature that for p<10% cm~2 screening of
the basic electron-electron interaction is completely
negligible. Thus we can simplify Eqgs. (29) and (35)
considerably by omitting the term 4we’p/ekT in the
denominator, i.e.,

1 Et5/2
___=A[_.._____,____.]p2 ,
Ten E04(E11_Et)3/2

1 h5/2Et5/2
~—=32(A/w>(2m*/h2>3/2(~—-)p, 37)
Ton ESEM

(36)

where
A= (1/%)(16mwe*h?/em*)?. (38)

The second and important screening interaction
relates to the majority carrier screening of the Coulomb
potential binding the electron and hole in the exciton.
The shift in binding energy due to screening is given by

Ey=E— (2¢*/me)qs, (39)

where ¢, is the screening parameter, and £ is the
binding energy at zero concentration. We expect that
for deeply trapped electrons where £ >>(2¢?/me)g, this
screening effect will not be important. Therefore we
conclude that the Auger process for bound electrons
given by Eq. (36) will be largely independent of screen-
ing. However, the plasma screening shift has important
repercussions for the Auger recombination of bound
excitons because of the dependence on E; in Eq. (37).
These equations therefore suggest that in the Debye
limit Auger recombination of bound excitons will only
be important in the range

PSS (3ekT /4me?) (weE 10/ 2¢%)?, (40)

and that beyond this concentration limit the Auger
mechanism for bound excitons will cut off despite the
fact that 1/7,, increases linearly with p. For typical
binding energies E°~50 meV we find from Eq. (40)

1V, L. Bonch-Bruevich, Zh. Eksperim. i Teor. Fiz. 32, 1092
(1957) [English transl.: Soviet Phys.—JETP 5, 894 (1957)].
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at room temperature that the cutoff concentration
limit is p.~10" cm™ when e~10. Below p, bound
excitons can form; above p, bound excitons are no
longer stable. This may appear to be an overstatement
bearing in mind that the energy shift in Eq. (39) was
derived by perturbation theory. There is no doubt,
however, that there will be some binding-energy shift
in the high-doping region. In our calculations we will
use the weaker cutoff E;=E"—1078p!/3 eV as suggested
by Bonch-Bruevich.!

III. APPLICATIONS TO GaP(Zn,0)

Using the results of the preceding analysis we now
calculate the Zn concentration dependence of the
quantum efficiency in GaP(Zn,0). The luminescent
quantum efficiency 7 is given by the product of two
branching ratios
(41)

where b is given by Eq. (8), and s is the rate of filling
of the Zn-O electron trap compared to the net rate of
decay of minority carriers out of the conduction band.
In the limit where the processes competing for electron
capture dominate?® (as in Zn, O-doped GaP), the s
branching ratio is proportional to the product of the
Zn concentration V4 and the oxygen concentration N,
so that

n=sb,

nebNoN 4. (42)

The b branching ratio [Eq. (8)] depends on the radia-
tive exciton lifetime 7., the Auger lifetimes 7,, and
Ten, and the occupancy factor f. Combining Egs. (5),
(6), (15), and (43) we find for p-like exciton hole
states that

f= {14 EEDIT

+ (7N o/ p)[1+(qo/8) P(1/7art-Bp)} ™, (43)
in which 7, N,=1/vs,°, and B is the coefficient of p
in Eq. (37).

In order to compute the concentration and tempera-
ture dependence of the occupancy factor f we examine
separately each of the terms in Eq. (43). In a p-type
crystal where the acceptor density N4 is much larger
than the donor density Np we can compute the Fermi
level E; from the relation!®

e Eil*T=2(N 4/N,)

X{AA[1+4WNV /N, )ePalRT =1 (44)
where £, is the acceptor ionization energy and N, is
the density of valence-band state, i.e.,
N,=2(m*kT/2xh2)32

=4.831 (m* /mo)*2T32X 105 cm=3.  (45)

Here m, is the free-electron mass; in actual computation
m* is taken equal to me. The Zn acceptor level Ey is

15 J. S. Blakemore, Semiconductor Statistics (Pergamon Pub-
lishing Corp., New York, 1962).
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Fi1G. 4. Variation of zinc acceptor ionization energy versus zinc
concentration in GaP(Zn,0). The full line is obtained from the
empirical relation Eq. (46) with E4°~71 meV. The open circles
represent the experimental points of Casey et al. (Ref. 16).

known to shift with Zn concentration in GaP.*® Follow-
ing the work of Pearson and Bardeen' in Si and the
work of Debye and Conwell®® in Ge, we use the following
empirical relation for the concentration dependence
of Ea:

EA=EA0—3NA1/3X 108 eV. (46)

In Fig. 4 we compare Eq. (46) with the experimental
data of Casey et al.® and find that the empirical
relation is in excellent agreement with the data.
Equation (46) appears to be related closely to the shift
in binding energy due to screening given by Eq. (39).
It is interesting to note that in the high-temperature
limit where the hole density is approximately equal to
the ionized acceptor concentration, Eq. (39) can be
related to Eq. (46) by using the Thomas-Fermi screen-
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o o
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1019

Fic. 5. Calculated values of the room-temperature (300°K)
hole quasi-Fermi-level against zinc concentration in GaP(Zn,0).
The sample is assumed to be uncompensated.

6 H. C. Casey, Jr., F. Ermanis, and K. B. Wolfstirn, J. Appl.
Phys. 40, 2945 (1969).

17 G, L. Pearson and J. Bardeen, Phys. Rev. 75, 865 (1949).

18 P, P. Debye and E. M. Conwell, Phys. Rev. 93, 693 (1954).
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ing parameter g¢,= (372N4)Y3. Room-temperature
(300°K) values of E; computed from Egs. (44)-(46)
are plotted in Fig. 5 as a function of Zn concentration.
The radiative lifetime of bound excitons 7., in
GaP(Zn,0) is known to be about 10~7 sec.® The electron
occupied Zn-O center has a hole-capture cross section
o given by?®
0p0=3.6X10718T1 cm?, 47)

so that we estimate at T=300°K 7,0V ;=1/v5,~10"
sectecm™3. With E;,=2.2 eV, E;~0.3 eV and E;.°~0.036
eV (8=4.6X10° cm™), the Auger B coefficient for
bound excitons, 1/7,,=Bp, obtained from Eq. (37),
has the value

B~ (Ew/E®)%2X 1071 cm3/sec. (48)

Substituting the parameters determined above into
Eq. (43) with p=N,e Fs/*T and using Debye screening
for ¢, we can calculate the Zn-concentration dependence
of the f occupancy factor. The results of the compu-
tation are shown in Fig. 6.

We observe from Fig. 6 that the occupancy factor f
is small in the low-concentration region and increases
with Zn concentration until it reaches a maximum at a
concentration of about 4X 10 cm™3. Beyond this range
f drops off rapidly. The initial increase in f is due to a
reduction in the Fermi level as the doping level increases
(see Fig. 5). As a result, the probability of binding
holes on the exciton hole level at Ej initially increases.
However, at the higher Zn concentrations (beyond
~5X 10" cm™3) screening effects become increasingly
important (¢g:>3) as well as Auger effects. As a conse-
quence, the probability of hole capture decreases and
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F16. 6. Theoretical curve [cf. Eq. (43)] showing the room-
temperature values of the exciton occupancy factor versus zinc
concentration in GaP(Zn,0). The hole binding energy was com-
puted from (Ref. 14) Ep=Ep"—10 8p/2 eV with F;0~0.036 eV.
This expression was used for obtaining values of the reciprocal
Bobhr radius of the excitons and of the Auger B coefficient.
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F16. 7. Calculated behavior of the branching ratio & as a func-
tion of zinc concentration in GaP(Zn,0) at room temperature.

the probability of nonradiative exciton recombination
increases causing f to drop off with increasing Zn
concentration.

We next compute the concentration dependence of
the b branching ratio given by Eq. (8). Using Eq. (36)
to compute 1/7.,, where 1/7.,=Cp? and Eq. (37) to
compute 1/7., we obtain from Eq. (8)

b={1+7.[Bp+Cp2(1—f)/fI} . (49)

We can estimate the Auger C parameter as done
previously for the B parameter and we find

C~10"% cm®/sec. (50)

The concentration dependence of the branching ratio
is shown in Fig. 7. In the low-concentration regime, the
branching ratio remains close to unity; however, it
falls off rapidly near and beyond an acceptor concen-
tration of N,~5X10 cm™3. This is a consequence of
the increase in free-carrier concentration which leads
to a decrease in f (see Fig. 6) and a rapid increase of
the two Auger terms contained in the square bracket
of Eq. (49).

Figure 8 shows the dependence of the quantum
efficiency 5 given by Eq. (42) on acceptor concentration.
Also shown are room-temperature experimental data
for the red Zn-O band in GaP. The theoretical and
experimental results shown in Fig. 8 suggest that the
red luminescence in GaP(Zn,0) quenches with Zn
doping as a result of screening of the exciton binding
energy and nonradiative Auger recombination pro-
cesses. In the low-concentration region (V4<10%
cm~3) 7 is low because few Zn-O pairs form. As the Zn
concentration increases the nearest-neighbor Zn-O pair
concentration increases and % increases. Eventually,
the acceptor concentration increases to the point where
the b-branching ratio begins to decrease rapidly
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F1c. 8. Theoretical curve showing the zinc concentration
dependence of the quantum efficiency (y=sb) in GaP(Zn,0) at
room temperature. The experimental points were obtained for
crystals grown with 0.02 mole?, Ga,O; in the melt.

(V4>5X10" cm™3) with the result that n drops off
with further increases in Zn concentration. The agree-
ment between theory and experiment shown in Fig. 8
is good considering that an order-of-magnitude estimate
was made for the various parameters. Better agree-
ment can be obtained by adjusting the parameters
determining the f occupancy factor and the Auger B
and C coefficients.

IV. DISCUSSION

In the foregoing sections, we have presented a theo-
retical calculation of the luminescent efficiency of
bound excitons in GaP as a function of doping. Although
the calculations were developed for a specific system,
i.e.,, GaP(Zn,0), they can be suitably adapted to other
systems.

The determination of the luminescent efficiency is,
in general, complex. The theoretical formulation in-
volves the calculation of the probability of capture of
carriers on point defects (leading to the formulation of
bound excitons), and the probability of radiative and
nonradiative decay processes. In our formulation we
find that the quantum efficiency of the exciton re-
combination process is not a simple ratio of the proba-
bilities of radiative and nonradiative decays. The
present treatment shows that the efficiency is related
to the branching ratio out of the exciton state which,
in turn, depends on the radiative and nonradiative
lifetimes as well as the exciton occupancy factor [cf.
Eq. (8)]. The concept of the occupancy factor f
is an important one. As seen from Egs. (6) and (43)
it depends on carrier concentration (and hence dop-
ing), the capture probability, the Fermi level, and
the radiative and nonradiative exciton lifetimes. Thus
it takes account of many detailed features of the re-
combination kinetics. Perhaps the most important
information it contains is the effect of plasma screening,
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which causes the capture lifetime to become longer in
the high-doping region (¢s>@). This is demonstrated
in Fig. 6 where the occupancy factor f falls sharply
beyond the acceptor concentration of ~5X10'7 cm3,
Thus in this region the probability of formation of
bound excitons falls rapidly owing to screening. This is
reflected in the behavior of the branching ratio. The
reason that the branching ratio remains close to unity
in the low-doping region where f is very small is that
the Auger terms Bp and Cp? are also very small.
However, the low value of f in high-doping region
augments the term [(1—f)/f]Cp* and the branching
ratio falls rapidly, i.e., much faster than would be
expected from a simple exciton Auger decay (Bp).

The fact that the over-all quantum efficiency in
GaP(Zn,0) first increases with acceptor concentration
and then falls for N4 beyond 10® cm— is due to the
behavior of the two branching ratios s and 4 in Eq. (41).
In the low-concentration region 4 is close to unity but s
increases with N 4. In the high-doping region & drops
off much more rapidly than the linear increase in s.
Thus the quantum efficiency reaches a maximum at a
certain value of V4 beyond which it is quenched rapidly.

The present calculation can be extended to other
systems exhibiting concentration quenching of the
luminescence. We shall discuss briefly the results of the
GaP(Bi,S) system. In this system bismuth acts as an
isoelectronic trap. The electron-hole pairs produced
in photoluminescent experiments are thought to follow
the following capture sequence. The hole is first
captured by a bismuth atom giving a Bi* center in
whose Coulomb field an electron is subsequently
captured. The resulting excitons bind weakly to Bi
(=100 meV) and give high quantum efficiency near
band gap luminescence in the green region. Experi-
mentally,? it is found at low temperatures (~20°K)
that the efficiency of the Bi luminescence is a rapidly
decreasing function of the S donor concentration
beyond a concentration of about 10¥ cm™3. Thermal
quenching of the luminescence is observed to occur
above 40°K with an activation energy of approximately
50 meV.

The situation in GaP(Bi,S) is very similar to that
in GaP(Zn,0) except that the roles of electrons and
holes are interchanged. There are a few important
differences, however. The experimental results for
GaP(Bi,S) are for much lower temperatures (20°<7T
<100°K). Thus in the low-temperature (~20°K) and
low-doping region the equilibrium concentration of
conduction-band carriers may not exceed the optically
generated carrier density. In this event® the exciton
occupancy factor f will have the value f=~1. As the
temperature increases, the Fermi level moves away
from the bottom of the conduction band and carrier
thermalization out of S donor levels will cause f to
decrease. Thus, in the low-temperature and low-
concentration domain, the branching ratio is given by
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b=~ (14 741/ 7sn) "t with 1/7,,~ Bn. The branching ratio
is expected to remain close to unity until # increases
with temperature to the point where 7., decreases. As a
result, b will decrease with temperature. Owing to the
fact that the binding energy E, of holes at Bi is only
about 40 meV,* (unlike deep trapped electrons for the
Zn, O case) the second branching ratio s becomes tem-
perature-dependent. Itinvolves afactor [1+ye~Z#/*7 71
where v is a dimensionless quantity weakly dependent
on T'. With increase in temperature s is expected to fall
as a result of the low activation energy F, Thus the
over-all quantum efficiency n=sb quenches with tem-
perature because both s and 4 fall.

The concentration quenching of the luminescence in
the low-temperature (20°K) and high-doping region
has been attributed by Tsang et al.® to excitonic decay
by an impurity-band Auger process. Although impurity
banding does play an important role, one must also
consider the role of plasma screening. From the work of
Hara and Akasaki® there is experimental evidence that
in sulfur-doped GaP, impurity banding sets in for an
S concentration of Np22X10"® cm=3. This is in good
agreement with the estimate for the Mott transition.?!
In the impurity-banding regime the probability of
capture of electrons at the Bit centers will decrease
owing to screening. Furthermore, the binding energy
of the exciton electron may also shift [cf. Eq. (39)].
This may weaken the exciton Auger decay process;
however, the delocalized electrons in the impurity
band can still recombine with bare holes trapped at

¥ P. J. Dean, J. D. Cuthbert, and R. T. Lynch, Phys. Rev.
179, 754 (1969).

20T, Hara and I. Akasaki, J. Appl. Phys. 39, 285 (1968).

2 N. F. Mott, Phil. Mag. 6, 287 (1961).
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Bi. The branching ratio is now given by
b={1+ru[Bn+Cw?*(1—f)/f1}7, (51)

where 7 is to be regarded as the delocalized electron
concentration. At the Mott transition, the occupancy
factor has the value f~% since the quasi-Fermi-level
is close to the bottom of the conduction band. The Fermi
level will, however, shift away from the conduction band
with increasing temperature, making f much smaller.
This and the fall in s with temperature may explain
the further decrease of the branching ratio observed
in the high-doping and high-temperature (~100°K)
region. To obtain agreement with experimental results®
the B and C Auger coefficients are required to have
larger values than for the GaP(Zn,0) system, i.e.,
B~10"% cm?/sec and C~10"% cm®/sec. This value of
B would be in accord with the estimate of Tsang
et al® It would appear therefore that the presence of
sulfur strengthens the Auger mechanism. A detailed
comparison of our theoretical expression with experi-
mental results is difficult, since a calculation requires
knowledge of the dependence of #» on Np, the concen-
tration dependence of FEj;, the complicated role of
sulfur electrons, and the effects of screening on binding
energies and capture probabilities. If we make reason-
able estimates for these parameters, we can get good
agreement between the calculated concentration quench-
ing and the observed quenching of the luminescence.
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